Upregulation of Mitimere and Nubbin acts through cyclin E to confer self-renewing asymmetric division potential to neural precursor cells.
نویسندگان
چکیده
In the Drosophila CNS, neuroblasts undergo self-renewing asymmetric divisions, whereas their progeny, ganglion mother cells (GMCs), divide asymmetrically to generate terminal postmitotic neurons. It is not known whether GMCs have the potential to undergo self-renewing asymmetric divisions. It is also not known how precursor cells undergo self-renewing asymmetric divisions. Here, we report that maintaining high levels of Mitimere or Nubbin, two POU proteins, in a GMC causes it to undergo self-renewing asymmetric divisions. These asymmetric divisions are due to upregulation of Cyclin E in late GMC and its unequal distribution between two daughter cells. GMCs in an embryo overexpressing Cyclin E, or in an embryo mutant for archipelago, also undergo self-renewing asymmetric divisions. Although the GMC self-renewal is independent of inscuteable and numb, the fate of the differentiating daughter is inscuteable and numb-dependent. Our results reveal that regulation of Cyclin E levels, and asymmetric distribution of Cyclin E and other determinants, confer self-renewing asymmetric division potential to precursor cells, and thus define a pathway that regulates such divisions. These results add to our understanding of maintenance and loss of pluripotential stem cell identity.
منابع مشابه
Slit signaling promotes the terminal asymmetric division of neural precursor cells in the Drosophila CNS.
The bipotential Ganglion Mother Cells, or GMCs, in the Drosophila CNS asymmetrically divide to generate two distinct post-mitotic neurons. Here, we show that the midline repellent Slit (Sli), via its receptor Roundabout (Robo), promotes the terminal asymmetric division of GMCs. In GMC-1 of the RP2/sib lineage, Slit promotes asymmetric division by down regulating two POU proteins, Nubbin and Mit...
متن کاملCyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates.
Asymmetric cell division plays an indispensable role during corticogenesis for producing new neurons while maintaining a self-renewing pool of apical progenitors. The cellular and molecular determinants favouring asymmetric division are not completely understood. Here, we identify a novel mechanism for generating cellular asymmetry through the active transportation and local translation of Cycl...
متن کاملmiR-219 regulates neural precursor differentiation by direct inhibition of apical par polarity proteins.
Asymmetric self-renewing division of neural precursors is essential for brain development. Partitioning-defective (Par) proteins promote self-renewal, and their asymmetric distribution provides a mechanism for asymmetric division. Near the end of neural development, most asymmetric division ends and precursors differentiate. This correlates with Par protein disappearance, but mechanisms that ca...
متن کاملProtein phosphatase 2A regulates self-renewal of Drosophila neural stem cells.
Drosophila larval brain neural stem cells, also known as neuroblasts, divide asymmetrically to generate a self-renewing neuroblast and a ganglion mother cell (GMC) that divides terminally to produce two differentiated neurons or glia. Failure of asymmetric cell division can result in hyperproliferation of neuroblasts, a phenotype resembling brain tumors. Here we have identified Drosophila Prote...
متن کاملAnalysis of Promyelocytic Leukemia in Human Embryonic Carcinoma Stem Cells During Retinoic Acid-Induced Neural Differentiation
Background: Promyelocytic leukemia protein (PML) is a tumor suppressor protein that is involved in myeloid cell differentiation in response to retinoic acid (RA). In addition, RA acts as a natural morphogen in neural development. Objectives: This study aimed to examine PML gene expression in different stages of in vitro neural differentiation of NT2 cells, and to investigate the possible role o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Development
دوره 131 5 شماره
صفحات -
تاریخ انتشار 2004